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Abstract.—-The global reliability of a communications network is the
probability that given any pair of nodes, there exists a viable path between
them. A characterization of connectivity, for a given class of networks, can
enable one to find this reliability. Such a characterization is described for
a useful class of undirected networks called "daisy-chained" or "braided"
networks. This leads to a new method of quickly computing the global
reliability of these networks. Asymptotic behavior in terms of component
reliability is related to geometric properties of the given graph.
Generalization of the technique is discussed.
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1. INTRODUCTION

In a distributed computing system, comrect performance may well require connectivity of
the network, That is, each processor (node) must be able to exchange information with any
other processor. A simple line nctwork then has this property, since a message can always
find a path, as long as all the intcrnode links (or edges) arc properly functioning (up or
viable). If we assume that there is a non-zero probability that a given link is failed (non-
functioning) at a given time, more links may be added to the nctwork. This increascs the
probability that enough paths will exist for connectivity.

The daisy-chain ring, or braided ring, communications structure is mentioned in
Pradhan’s [2] survey article, and discussed by Gmarov et al. [3], and Hafncr et al. [4]. An
implementation of this architecture has been built at the NASA Langley Rescarch Center as a
candidate system for inter-process communication on the space station. We consider both the
daisy-chain ring and line configurations, and give a characterization of connectivity for each.
This provides understanding of the idca of connectedness in these networks, and leads to a
new mcthod for computing their global reliability (probability of conncctedness). This type
of reliability is also known as all-to-all reliability (Provan [6], Ball and Provan [1]) and all-
terminal rcliability (Politof and Satyanarayana [7]). We consider that all nodes are perfectly
reliable and that the links have cqual unreliability.

Other ways of finding this reliability exist; classically one may attempt to use path-sct
or cut-set mcthods, (see [5]) but this fails to exploit the considerable symmetry of the given
situation and will be much more expensive in terms of memory and number of arithmetic
operations. Even using sophisticated tools such as boolean-expression analyzers, a 10-node
system may take scveral days to run (on a VAX 11/780), with considerable input pre-
processing overhead. Results from such a vast number of computations must be considered
suspect because of cumulative crror.  An approach such as serics-parallel reduction [7], may
be used, but the technique of blocking sets introduced here is well suited to a clear, explicit
derivation, and is suggestive of further gencralization.

Using this new charactcrization of connectivity, a polynomial-time computation for the
global reliability of these networks (the braided line and ring) is determined. This has been
implemented as a program that recursively calculates ring and line connectedness probabilities
for incrcasing values of n, the number of nodes. An explicit polynomial in U, the link
unreliability, can easily be written down by using this algorithm. The technique (disjoint
blocking sets) also permits a reliability analysis of related communications architectures, such
as a daisy-chain ring where several links are known to be failed (or missing) and where
several others are known to be functioning. Qur results agree with numbers produced by an
exhaustive spanning-tree approach for 5, 6, 7, and 8 nodes. Answers for less than 30 nodes
are produced almost instantly on a VAX 11/750 machine.

After defining the notation, in section 2 we define the networks we are concemed with,
give a didactic analysis of the simple line and ring problems, and define the ¢ -blocking set.
In sections 3 and 4 the main thcorems arc stated relating non-connectivity to the existence of
certain g-blocking sets. In section 5, a natural decomposition of the sample space is given
with an explanation of why this is pivotal to our approach. In section 6, recursive formulas



for the braided-line and -ring connectivity are derived using conditional probabilities and a
recursive analysis. This argument is simple for the case of the braided-line, but more subtle
for the ring case. In section 7, numerical results are given and some asymptotic propettics
are noted. Some intcresting rclations between asymptotic values of the reliability and the
number of trees in the graph are noted. Also, generalizations for applying the method to
sub-ring architecturcs are examined, along with limitations on trying to generalize further.

Notation

n number of nodes

I, simple linc with n nodes
Tn simple ring with n nodes
L, braided n-linc

R, braided n-ring

Q(n) rcliability of L,

Qr(n) reliability of R,

U link failure probability
o B links (cdges)

lp. L~ (B)

@i,i+1) primary edge

(i, i+2) moon

i, j1
i, j] (mod n)
E

interval in n-line
interval in n-ring
set of edges

G, H n -graph, network with failures (edges removed)
Fp, probability space for L,

o outcome in probability space

B; . Ci blocking sets (blockers)

B, blocker of length ¢

B extension of blocker to R,

T path in graph

P(B) probability of B occurring

G4 the cdge (3,4) is down

T, W events; subsct of F;_or Fg

Gl global blocker

= global interval’

Yir G blocking probabilitics

¢(n) number of flops

M number of spanning trces

A exotic network

Po Pp failure probabilities of R, with o or B removed
x=Yy approximate equality

Other, standard notation is given in “Information for Readers & Authors

issue.

** at rear of each



2. PROBLEM STATEMENT

Introductory Example

Consider the simple linc network with n nodes /,. [Figure 1]. Its links, or edges, may
be given by
e; = ({)-(i+1)

for node number 1 <i € n—1. One may also write ¢; as (i,i+1). The simple line may be
tumed into the simple ring r, by adding a link e, = (n,1). Let U be the unreliability of a
link: the probability of its being failed (inoperative) at a given time. Then the simple line is
disconnected (has morc than one path-connccted component) if and only if one or more of
the links arc failed (down). The probability of this event may be computed in several
differcnt ways. Firstly, it is secn that the event of being disconnected is complementary to
the event (actually a single outcome) of all links being *‘up’” (functioning). The probability
of this last event is of course

1-Pp(n)=Q-U)""

Here, Pp(n) is the probability of the line being disconnected. Another method for comput-
ing Pp(n), which scems a bit artificial but serves to introduce concepts and notation that will
be of use later, is as follows. The n-line /, can be written as

L,=01, - ,nl

Sclect o, a link in [, say o = ¢, = (k, k+1). Then when a is removed, two lines remain,
namely

Ifirsl =[1, - ,k]

Ligy = lk+1, - -+ ,nl.

Now the probabilistic **event’” ', is down' corresponds to E, U E,, where E, is the
cvent 'link o is down’, and E, is the event 'link o is functioning and cither Iy OF gy iS
down’. Then E, and E, are disjoint, E, N E, = @ since o cannot be simultancously up and
down. One can further write E, as a disjoint union

EVEYUE™

where, for example, E,,"7 is the event where o is down, Iy, is up and [,y is down. We
then have

2.1) Pp(n) =U + (1=U){Pp (k)(1-Pp(n—k-1)) + (1-Pp (k))Pp (n—k—-1)}
= U + (1-U )(Pp (k }+Pp (n—k—1)-Pp, (k)Pp (n—k~1)).

Here we assume that Pp (k) for valucs of k less than n are alrcady computable. This recur-
sion is complcte when

Pp(0) =0,
Pp(1)=U.

For the case of the simple ring, disconnection requircs two links 1o be down. (When
only one link is down, there is cither a clockwise or a counterclockwisc path between two



given nodes.) There are [2] ways of choosing a sct of cardinality ¢ from E = sect of all n
edges. Then the probability of disconnection is

2.2) 3 [’;]UCU-U)H.

i=2
Alternatively, note that for the ring r, to be up, it is sufficient that

a) all links be up, OR
b) at most one link be down.

The probability of the event in a) is (1-U )", but it can also bc generated as follows.
Picking a particular link B, that which remains when it is removed is an n-line /, whose up-
probability is already known (by the above discussion). Therefore for the event a),we have
(1-U)(1-Pp (n)), which checks out to (1-U )*. The probability in b) can be given by con-
sidering a link B. If B is down and the ‘‘complementary n-linc’ lg, is up, the event is
satisfied. But the probability of this occurring is

U-(1-Pp(n)).

There are n choices for B here, and the choices lcad to pairwise disjoint events. Finally
adding the probabilities for a) and b), we obtain

(2.3) 1-Pp(ry) = (1-U Y(1-Pp (n)) + nU -(1-Pp(n)),
which cquals aU -(1-U y*-1 + (1-U)"* which is consistent with formula (2.2).

Braided Lines and Rings

We now dcfinc the braided line network with n nodes L,. The network consists of
two types of link:

1) primary edges ¢;:(i)2(+1),i =1, -+ , n-l, which can be written (i ,i+1), and

2) secondary cdges, or ‘‘moons’’ (due to a fancied resemblance to a rising moon).
These cdges conncct alternating nodes, and are in tumn of {wo types: upper moons
ugj_1: (2j-1-(2j+1) and lower moons ug;: (2j)—(2j+2). These links are also given by
(2j-1,2j+1) and so forth. Sce Figure 2 for L.

The braided-ring (daisy-chain) network R, is similar with an additional primary edge
(n,0) and secondary edges (n,1), (n-1,0). See Figure 3 for Ry;. To analyze the respective
connectedness probabilities for these two types of network, a precise definition of disconnec-
tion, and a necessary and sufficient condition for disconnection will next be given.

3. CONNECTIVITY AND BLOCKING

Given two nodes a and b in a graph G, a path « from a to b is a subsct E, of E, the
edges of G, with the following properties. Each edge has two vertices (boundary nodes).
For our purposes, there is no loss in assuming that these are distinct. Then there must exist
functions



¢,': El - {Nodes},
¢,: E;— {Nodes},

such that ¢;(e) is a vertex of e, called the initial vertex, and ¢,(e) is a different vertex (if
there are two distinct ones), called the terminal vertex. There must also be an ordering of
Ei=(ey, -+ ,&) so that ¢;(e)=a, o (er)=b, and for j=1, - k-1,
o, (¢;) = hi(ej4)-

Thus a path from a to b is an ordered set of oriented edges where terminal and initial
nodes of successive edges arc cqual, beginning at a and ending at b. What we will be con-
sidering are subgraphs of L, with the same nodes, which we call an n-graph G. We will
look at G in three slightly different ways. Firstly, G can be viewed as L,, with only certain
edges removed. Sccondly, G can be considered as a mapping from the edges of L to the sct
{up, down}. Thirdly, G is an outcome, an clement of the event Fy . Thus a path in G is
simply a path in L which has no down edges (for the particular up-down assignment). In the
diagrams, down edges will be represented by a short segment through them, as in Figure 2.

There are certain subscts (of the sct of up and down edges) of L, which are closely ticd
to the connectivity of a graph G. Such a blocking (or barrier) set is uniquely specified by an
initial node i and a final node j. If ¢ = j~i, we may call it a g-blocking sct, written B, or
we may writc B; ;. The dcfining conditions (rules) of a blocking sct are:

1) All the primary edges (i,i+1)", - -« , (j=1,/) are down, AND

2) Any upper moon 4 whose node-ends are both in (¢, - - ., j) is up. (That is, if
u = (k,k+2), then i Sk and k+2 < j.) Similarly, any lower moon v whose ends are in
(i, -+ ,j) must bec up, AND

3) If i>1, the moon (i-1,i+1) is down. If i =1, no corresponding condition applics
(this moon does not exist). If j<n, then the moon (j-1,j+1) is down. If j = n, no condi-
tion applics.

Formally, a blocking set B is a certain type of subsect of EUE™, the union of all edges
as considered “‘up’’ with all cdges as considered ‘‘down’’. A blocking set gives rise to an
event Fy < Fg. For certain edges, their up-down status is specificd by the three rules above;
all other edges are not specificd, and cach generates two scparate outcomes. We will often
not distinguish between the blocking sct B, and its interpretation as an event. Thus we can
write B, c L,, P(B,), and so on. In fact, the probability of B; ; is fairly easily found:

Uq+2(1_U)Q"1 ifi#zlandj#n,
P(B;j) = U"“(I—U)q-l if i =1 or j =n but not both,
Uia-Uy"' ifi=1andj=n

where U again is the probability of link failure. The differences arise due to the presence of
moons on cither end of the blocking set. In B; ;, the moon (i —1,i+1) is called a left-moon if
it exists (when i # 1, thus contributing to P (B)), otherwise it is a virtual left-moon and con-
tributes nothing. Similarly, there are right-moons and virtual right-moons. All right and
left-moons must be considercd down. The other moons of B;; are called inner-moons and

should be considered up.



Any blocking sct B;; corrcsponds to a contiguous set of q primary edges, namcly
(i ,i+1), (i+1,i+2), --- ,(j-1,j). Any such collection of cdges gives rise to a unique
blocking sct. An edge from the collection then belongs fo that blocking set, and the blocking
set covers that primary cdge.

Definition. In an n-graph G (subgraph of L,), node a is disconnected from node b if and
only if there is no path of edges in G (up edges) with initial node a and terminal node b.

This is consistent with our terminology on connectedness and n -graphs.

Definition. The n-graph G contains the blocking set B; j if the outcome G € Fy_ satisfies
G e Fp, , as well. In other words, the edges whose ‘‘up’® and ‘‘down’’ status is specified

by rules 1) - 3) that define B retain their status in G. Figure 4a shows a S-graph G contain-
ing By 4.

The main result we seck is that an n-graph G is disconnected if and only if it contains
a blocking set. Now any 1-graph is connected, so we take n 2 2 unless otherwise indicated.

Lemma 1. Let G be an n-graph (n 2 2). Then node 1 is disconnected from node 2 if and
only if the primary edge (1,2)” is down and belongs to a blocking sct B of G (G contains
B). :

Proof. First assume that (1,2) belongs to a blocking set B. We wish to show that node 1 is
disconnected from node 2 in G. In the case n =2, the only blocking set is B3, and the
only edge is (1,2)” which is down by rule 1). Thus 1 and 2 are disconnected. If n > 2, then
the blocking sct extends to 1, - -- , j1. (The corresponding primary edges are covered.)
There are no paths in G originating at 2 and extending to the left. Any edge leaving 2 is a
moon extending to the right. But if the right end-node of this moon lics outside of B, then

1) this moon is down by rule 3), OR
2) the moon is virtual (when n = 3).

In either case, node 2 is isolated and we are finished. Thus the right vertex 4 of this moon is
in B. The primary edge (3,4)" is down by rule 1). So, node 4 has no edges leading to the
left except for (2,4). If this moon is part of a path to node 1, then the above argument (about
edges from 2) shows that there is a shorter path 4 — 1. Similarly, nodes 6, 8, - - - are in
B, or there is no path n: 1 — 2. But B is finite and thus the conclusion holds.

Next we must show that for 1 to be disconnected from 2 implies that some B, 4 is con-
tained in G. Clearly (1,2)” must bc down. If n =2, this down edge already satisfies the
rules for a blocking sct so we are finished. If n > 2, if (2,3) is up, then (1,3)” must be down,
or there is a connection. But then B, is the required blocking set with a virtual left-moon.
Take (2,3)” as down and (1,3) as up. If n happens to be 3, then B, 5 already is a blocking
set having (1,2)” as a primary edge and a virtual right-moon. Now if n > 3, the moon (2,4)
may be taken as up, since otherwisc B3 would still fit the definition of a blocking set with
the required property. But then (3,4)” must be down, elsc we have a pathl 535452,

We continuc rightwards in the following manner. On reaching a new node Js

i) If j =n we have constructed down primary edges and up moons, so we have a
blocking sct B, , satisfying thc lemma. OR,

if) Consider the edge (j,j+1). If this edge is up then the moon (j—1,j+1) must be
down or there will be a connection (path) 1 — 2, (Consider the cases j = even, odd.)



If the moon (j-1,j+1)" is down, then B; ; satisfies the lemma. On the other hand, if the
edge (j,j+1) is down go to step i) or ii) with j replaced by j+1, and so on. By finitencss,
the lemma is proved.

Observation. If ab € G, with a <b, are disconnected, then there exists a’ with
a <a’<b, such that a’ and a’+1 are disconnected.

Proof of Observation. If b = a+1, we are finished. If not, pick a node ¢ distinct from a
and b lying between them. Then ¢ is disconnected from cither @ or b. Rename this new
disconnccted pair @ and b and procced as before. This eventually results in a’ with the
desired property.

The following two lemmas arc generalizations of lemma 1 and imply the main result on line
networks almost immediatcly.

Lemma 2. Suppose a and a+1 are disconnected in G. Then there is a blocking set B (a)s(0)
which covers (a,a+1); thatis, (a,a+1) is a primary edge of B.

Proof. Clearly (a,a+1)" is down. If a = 1, we are finished according to lemma 1. Else con-
sider Figure 4b. If thc moon (a—1,a+1) is up, then the (a—1,a)” primary edge is down.
Now a can be neither the right nor the left endpoint of a blocking sct; that would violate rule
2. Tt follows immediately that (a,a+1) is a primary edge in a blocking set if and only if
(a—1,a) is a primary edge in the same blocking set. Also, a—1 is disconnected from a or
there would be a conncction from a to a+1 through a—1. But we know that if a—1 were
equal to 1, there would be (by lemma 1) a blocking set covering (a—1,a,a+1). If not, by
induction on a, there is a B that covers (a—1,1) and must cover (a,a+1) as well, since we
have just scen that these two edges arc both primary edges in the same blocking set.

Thus we may assume that the moon (@a—1,a+1)" is down.

At this point, the simplest way to argue is to consider the n—a+1-graph H, which is the
subgraph of G obtained by throwing away all nodes 1, - - - , a—-1 and any edges incidcnt to
them. Clearly a (= 1;) and a+1 ( = 2;) are disconnected in H, and (a,a+1) is covercd by
a blocking sct C, of H. But since (a—1,a+1)” of G is down, this shows that B, gia-1 in
G is a blocking set covering (a ,a+1). This completes the proof of lemma 2.

Corollary. If ab € G, with a <b, are disconnected, then there exist a’,b’ with
a <a’<b’sb such that a’ and b’ are disconnected and therc is a blocking set B,,inG
where s < a’ < b’ St. In particular B covers partof [a, --- , b].

Proof. The corollary follows immediately from lemma 2 and the Observation.

Lemma 3. If the blocker B; ; is contained in G < L,, an n-graph, then node i is discon-
nected from node i+1.

Proof. If i =1, this follows from Icmma 1. If { > 1, suppose there is a path x: i — i+1. If
this path only visited nodes k 2 i, we might as well be in the graph H =G N (i, --- .n),
with irrclevant edges deleted. That would give a connection between 1 = ic and
2y = (i+1)g which violates lemma 1. Otherwise, some edge of & rcaches some node k <i
for the first time. This must be along edge (k = i-1,i+1) (the dirccted edge i+1 - i-1),
which is impossible since this is down by rule 3), or edge (k =i-1,i) (directed edge
{ = i-1). In the latter case, the path will subsequently retumn to node i. This gives a loop
in =, touching only nodes k& < i which may be deleted, giving a shorter path which eventu-
ally gives a contradiction.



Theorem 1. A braided-line nctwork G < L, is disconnected if and only if it contains a
blocking sct B; j, 1 <i < j S n.

Proof. Suppose that G contains a blocking sct B; ;. Then i is disconnected from i+1 by
lemma 3, so the network is disconnected. Conversely, if G is assumed disconnected, Ict a
and b be nodes with a < b which have no connection-path. Then the corollary to lemma 2
implics the existence of a blocking sct B that covers part of the interval [a,b]. This block-
ing set satisfics the conclusion of the thcorem.

4. THE RING GRAPHS

'

In this section we discuss the similarities and diffcrences between conditions on the
braided linc and braided ring for (dis-)conncctivity. The dcfinition of H, an n-ringed-graph
is similar to that of an n-graph. It may be considered to be a subset of the sct of edges of
R,, or as an assignment of the value ‘‘up’’ or ‘‘down’’ to each cdge of R,.

The blocking sets of R, arc defined as follows. Consider a consccutive (contiguous) sct
of edges in R,. If this sct is considcred to have a beginning node i and an end-node j, the
blocking sct B;; satisfics rules 1), 2) and 3) of section 3. Thus we have edges
(i, i+1), (i+1,i42), - -- , (j-1,j) (mod n) as primary edges belonging to B; ;. Note that in
case i = j+1 (mod n), the moons (j—1,i)” and (j,i+1)” are down. The case i = j is also
possible. In this case all primary edges of the ring R, are down and belong to the blocking
st B; ;4n, and the moon (j~1,i+1)” is down. The remaining casc is when the blocking sct B
has no beginning or end. This implics that every moon of the ring R, has end-nodes interior
to B and must be considered up. For each n, there is only one such blocking set; if H con-
tains such a B, then in fact H = B, hence H corresponds to an outcome, an event with a sin-
gle element. All of the primary edges and moons of R, are specified: the primary edges arc
down and the moons are up. This may be call the global n-blocking sct Gl. It is easy to see
that if n is odd, 2 5, the global blocker gives rise to a connected n-ring graph, whereas for
n even, n 2 4, the global blocker is disconnected with two componcnts.

A g-line L; j, j—i = q (mod n), can be embedded in R, for ¢ < n. Given a blocking
sct B;, c HNL;; considered as a q-line blocking set, we say that B extends to a ring
blocking set C, if C is indced a ring blocking set as just defined, Cc H, and
CnL;; =B;,. Similarly if we have B, ;c HNL; ; or even B, ;, then C may be a blocking
set with end-nodes, or the global blocker. For the main result on connectedness of a braided
ring nctwork, we need a few more lemmas. In Figure S5 we have a blocking set B3 in L4
which does not extend to a blocking sct in Rg.

Lemma 4. Consider B,, a blocker of length ¢, where g is odd (=1 mod 2), in an n-graph
G. Thenif B, = B; j, node s of G disconnects from node ¢ whenever s < i<jst.

Proof. A path x from s to ¢t consists only of #p primary edges and moons, 50 it must meet
node i or node i+1. In particular, the directed path beginning at s (choosing the corrcct
oricntation) meets the interval [i, - - - , j] for the first time in one of those points, i or i+1.
This must be i since the moon (i—1,/+1)" is down. Similarly the path with opposite orienta-
tion from ¢t meets [i, -+ , j] for the first time in j. But by rule 2) since ¢ is odd, j is
connected to i+1. Thus & gives a connection between i and i+1, which contradicts lemma 3.

Lemma 5. A blocking sct B, < G, an n-graph, satisfics the following when ¢ is even (=0



mod 2), and ¢ 2 2. If B, = B, ;, i<j, then given s S and ¢t 2 j, s disconnects from i+1
and ¢ disconnccts from i+1.

Proof. As in the proof of lcmma 4, a path from s to i+1 must mect node i which is impos-
sible by lemma 3. By symmectry there is no path from ¢ to j—~1. But i+1 is connected to
j—1 since q is even, hence there is no path from ¢ to i+1 either.

Definition. We say that two ring-blocking sets B! and B? arc disjoint if they have no pri-
mary edges in common,

Theorem 2. Let Hc R, be an n-ringed graph. Then H is disconnected if and only if there
are two disjoint blocking sets C', C? in H, or one blocking sct C, where the length g is
even (g = 0 mod 2).

Proof. Assume that there exists a blocking set C!=C, » CH. Let gy = length of
C! = b-a, and consider C! as a q-graph in L,. Since a and a+1 are disconnected in cl,
if there is a path x: @ — a+1, it must cnter a node of H — C! for the first time. The node it
reaches is always a—1 (resp. b+1) (mod n), by rule 3. If the path subscquently enters C Iat
a (resp. b), the path may be shortened by removing this loop. If the path instead enters c!
at b (resp. a), we obtain a connection between a and b as part of . But if g is even, that
part of 1t can be replaced by a path entirely within C!. Eventually we get a path a = b
entirely within clc L,,, which contradicts lemma 5. In this case H is disconnected. On

the other hand, if ¢, were odd, consider C 1= Cryp- Iqy=¢g-f iseven, H is disconnected
by what was just shown. But if q% is odd, we just saw a connection a — b entircly con-
tained in H — C!. Considering C*c H - C 1c Lyg 410 this gives a connection bctween

leL, 4,11, G€R,, and n—q,+l, beR,, which is impossiblec by Icmma 4, due to the
existence of the odd blocking sct C 2 We conclude that two odd blocking sets or one even

blocking sct disconnect a ring network.

Conversely, suppose that H is disconnected. Then take, by an argument similar to the
Observation above, nodes a and a+1 which are disconnected from one another. Pick any
line graph L, R, which covers (a,a+1). Since a and a+1 arc disconnected in L,, there is
a blocking set B covering (a,a+1) in L,. Now B extends to a blocking set in R,. We sce
this, for example, in the case B = B, in L,; a conncction between nodes 1 and 2 of B leads
o a conncction between a and a+1. If the moon (n,2)” is down, B satisfics rule 3) on the
left. Otherwise the primary edge (n,1) must be down or a conncction 1 — 2 exists. Then
continue on the Icft until

i) a moon is down, OR
ii) node k is visited.

If necessary, we extend B to the right as well, obtaining a ring-blocking sct BcH. If
length(8) = q is cven we arc done. If ¢ = n is odd, all nodes arc connected (whether 8 is a
global blocking set or not), and this contradicts the hypothesis. Thus we may assume that
B =B, ; where (j, j+1, -+ - , i) (mod n) consists of at lcast two nodes. Clearly j and i
arc disconnected in H, so the interval [f,i] contains a blocking set C < L;_; which may be
extended on both sides to a blocking sct € of R,.
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5. FAMILIES OF DISJOINT EVENTS

In this scction, we give a natural decomposition of the probability space (sct of out-
comes) associated with the connectivity problem for the braided-line and -ring networks. In
the following section, this decomposition will be used to compute the all-to-all reliabilitics
(connectedness probabilitics) that we seck. The method involves finding a sct of events {T'}
such that

i) every outcome ce T corresponds to a connected network,
ii) every such 'connected’ outcome belongs to some such T (exhaustion),
iii) i # j => T;NT; = D (disjointness).

Then it follows that if X is the cvent ‘‘the network is connected’’, we have
5.1 P(X) =ZP(T.-)-
[

In section 4, the concept of disjoint blocking set was introduced. In fact, we now prove
that disjointness generally holds.

Proposition 1. Let B! and B? be any blocking sets in a given nctwork H c L, or cR,.
Then B' = B? or B!, B2 arc disjoint (have no primary edges in common).

Proof. 1f B! and B? arc both global blocking sets (in R,), then they are the same. Thus if
B! # B2, we might as well assume that B! = B; ; is not global. Then if we arc in L,, we
take B2 = By .. If we arc in R,, and B?is global = Gl, then (i-1,i+1)" is down because
of B!, but ({-1,i+1) is up duc to Gl. No outcome H (specificd network configuration) can
satisfy these conditions simultancously, so B2# Gl Ifi=f,j=g, then B! = B? by the
identical specification given in rules 1) - 3). Suppose then that i<f <j (the case i<g<j is
handled similarly). But then (f -1, f+1) is down due to B, and up due to B;; since
(f -1, +1) is an inncr moon unlcss f—1 = j—1 which is ruled out. All other cases arc han-
dled by symmetry and lead to the disjointness property which was to be proved.

Recall from section 2 how we characterized the disconnection event for the simple line
and simple ring. One takes a family of events which is exhaustive and whose members are
pairwise mutually exclusive and sclects the members corresponding to the ‘event’ in question,
in this case line- or ring- disconnectedness. In fact one may take as this family F = (S},
where § = some subsct of the set of edges of this line (or ring) network. A subset S is
chosen if

i) it contains at Icast one cdge (simple line case), OR
i) it contains at lcast two edges (simple ring case).

The probabilitics for the various events were given in scction 2. Now we construct
analogously the familics of cvents involved in the braided-linc and -ring ‘events’. Let T be a
sct of disjoint intervals. Each interval is a set of consecutive primary edges and may be writ-
ten [g.g+1, --- ,h) or [g, ], modulo n in the case of the n-ring. Additionally in the
case of the n ring, an ’interval’ Z representing the entire ring comes about (no beginning or
end).

We wish to make correspond to such a set T an event Wc F(L,), each clement of W

being a set of up-down configurations of the n-line, resp. n-ring. This correspondence is
given by ¢: T | >W, where W is the event consistent with the following two criteria.
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(5.2) Correspondence Criteria

i)if[g,h] € T, the event F (B, ») holds,
ii)if [g,h), [kom] € T, and no [a,b]eT exists, where A < a<b <k, the event: ‘‘the
sub-graph L, , of L, (or R,) is connected”’ holds.

In other words, all of the events determined by criteria i) and ii) may be collected and their
intersection formed to give §(T') = W. Also, §(E) = Gl, the event of the global blocking set,
which of course consists of a single outcome. The following observation is stated as a
theorem.

Theorem 3. The sct of events (W)} is exhaustive and pairwisc disjoint, that is,
T1#2Ty=>W NnW,;= 2, and U¢(T) =F(L,).
T

Demonstration. The set is exhaustive since for any outcome ceF(L,) or F(R,), which is
essentially an n-graph or n-ringed graph H, we can examine interval to see whether they
satisfy the blocking rules 1) - 3). When we find such an interval, remove it and repeat the
process on the complementary interval. Finally no further such blocking sct will be found.
We are left with a number of blocking intervals and a number of 'complementary’ intervals.
These complementary intervals satisfy criterion ii) of (5.2) above, since any interval which
contains no blocking sct is connccted by theorem 1. Next we must show that 6 belongs to
cxactly onc such event. Supposc 6 € §(T;) N ¢(T7). Without belaboring the obvious, it is
clear that if the scts {B } and {B?) of blocking sets are different, then either

1) thcre exist B,! from W, and B, from W, whose primary edges overlap but
B,' # B,% Thisis impossible by proposition 1. OR,

2) some B’ from W, has all of its primary edges within an "up’ (connected) intcrval [i,j]
according to W,.

In the sccond case, thc n-graph H corrcsponding to the outcome o, has a blocking set
B c[i,j]. But since B = Bnli,j] is a blocking sct in the n-linc L; ;. HNli,j] cannot be
connected according to lemma 3. We have therefore constructed {W ), an exhaustive and
pairwise mutually exclusive family of events on F(L,) or F(R,), as required by the thcorem.

6. THE RELIABILITY COMPUTATION

We introduce some notation: Q(n) is the probability that a braided (n+1)-line, with
n+1 nodes and n links and link failure probability fixed at U, is connected (functioning).
Thus L, satisfies global rcliability with probability O (n). It is clear that

6.1)
o0 =1
e)=1-U

We next derive a recursive formula for Q(n). As in the ‘‘artificial’’ derivation of the
simple linc reliability in section 2, which resulted in formula (2.1), we focus upon a particular
primary edge o. In fact we take o= (1, n+1) and perform a case-by-case analysis of the
up-and-down status of links associated with o.
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If o= (n,n+1)" is down and the moon (n-1, n+1)" is down, then the node n is iso-
lated, so this possibility contributes nothing to Q(n). See Figure 6. If a is down while
(n—1, n+1) is up, then it is casy to sec that L, will be connccted if and only if L, is con-
nected. The following contribution is obtained:

(6.2) uQa-uy@n-1).

The other cases occur when o = (n, n+1) is up. Then clearly if L, =[1, --- , n] is all-
to-all connected (for a particular up-down choice on all its edges), then so is L, (for that
same choice on edges common with L,). The abuse of language explained by the parentheti-
cal remarks will be resorted to without further comment. However, under certain conditions
L, could be disconnected and L,,; still be functioning. According to theorem 1, this can
happen only when B, a blocking sct of L,, is no longer a blocking sct as a subset of L,,;.
But this happens precisely when B = B; ,, 1 <1 < n~1, is a blocker which abuts the end of
L,. Such a blocker will not be a blocker in L,y as long as o is up and (n -1, n+1) is also
up, on account of blocking rule 3). Of course if there are other blockers in L, besides this
B, L,,, will also be disconnected, and no contribution to Q(n) will bc made. We have
obtained an expression

n-1
(6.3) C(1-H{Q@-D+ (1-U) TvQr~i-1)},

i=1

Ut a-uy-! i#n-1
where Yi =P(Bfl-i—l.n—l) = Un-l(l__U)n—2 i=n-1

Then Q(n) is given by adding (6.2) and (6.3) and using (6.1). It is of course simple to
implement these formulas by a computer program.

Next we consider the case of the braided n-ring R,, having n nodes and a primary
links, whose global rcliability is written as Qg (n). It should not cause confusion that Q(n)
refers to the braided line with n+1 nodes. According to thcorem 2, R, is functioning if and
only if

i) there are no blocking scts, OR
ii) there is at most one blocking set, and it covers an odd number of primary inter-
vals.

Now it follows from thcorem 3 that the following primary intervals Icad to disjoint events by
the correspondence of section 5, and their union contains all outcomes for which R, is con-
nected:

I) the empty intcrval (leading to no blocking sets in R,,),
II) an interval [, - , j] (mod n) where j— modulo n is odd,
I1I) the cntire ring R, when n is odd, leading to the global blocker Gl.

We consider the contribution of each of these events to Qg(n). The contribution from casc
I1) is simplest and yields

64) utQ1-u).
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Next consider the contribution from II). It is ¥, P(B;, j) Q(n—j+i) where 1 <i,j <n, and

ij
n—j+i is taken modulo n. These number-theorctic obscuritics are quickly cleared up if we
convert the expression into

(6.5) ne T ¥, 00—,
g=1

Ut-uy! g#n
where Yq = Uq+|(1_U)q—l q = n

Formula (6.2) follows since therc arc precisely n distinct intervals [i, --- , j] with
j-i=q (I £q sSn)(@modn).

Finally we consider case I), which is handled similarly to the braided-line recursion,
with the use of conditional probabilitics. Here, as in section 2, we look at a particular pri-
mary edge o, and the up-down status of itself and of its ncighboring moons. Let a be the
primary edge (n, 1). The associated moons, called ‘‘wings’’ are (n, 2) and (n—1, 1). In the
first instance, suppose that o is up and both the wings are down. Then every blocker in the
line L,y =[1, :-- , n} remains a blocker in R,. Since no new blockers are formed, the

contribution to Qg (n) is
(6.6) (1-U)YU%Q (n-1).

If on the other hand, o is up and cxactly one wing is up (which can occur in 2 ways), block-
ers in L, which abut the ‘‘down’’ wing remain blockers. Blocking sets from L, which abut
the ‘“‘up’’ wing do not .become blocking sets in R,. By similar reasoning to the line case
above, we obtain a contribution of

67 2UM1-U)Q(-1) + 3, 1,0 (n-1-)),
q=1

Ut™a-u)ytt g #n-1
where y, = UIa-Uuy-! q=n-1
The trickiest case ariscs when a and both the wings (n—1, 1) and (n, 2) are up. In this
case blockers from L, abutting either end are no longer blocking sets in R,. In fact, two
blocking sets of this kind can exist in L, without R, containing any blockers (by placing one
at either end). The contribution is

-1
6.8) (1=UY-(Q(n-1) + Z G0 n-14-)),

UHa-uy! j #n-k-1

where ¥y, is defined as in (6.6), but where {; = {Uj(l—U)j" j=n—k-1"

The case n = 12, k =5, j = 6 is illustrated in Figure 7. We sce that since B, ¢, B¢, 11 abut
at node 6, the moon (5, 7)” should not be counted as a **down’’ wing for borh blocking scts.
This is the meaning of the exceptional case in the definition of ;.
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Now we tum to the cases having o~ down. If one wing is up and the other down, it is
remarkable but true that all blockers of L, remain blockers in R,. Thus we get a contribu-

tion
6.9) 2.U%(1-U)Q (n-1).

If both wings are up, no “‘cnd blocker’’ (one that includes the node 1 or n) of L, remains a
blocking set with one exception. This is the blocker corresponding to the entire line
(1, -, n], which tums into the global blocking set GI! However, one must notice that if
there arc blockers abutting both sides of o, they merge into one large blocker in R,. Thus
we allow blockers abutting either end in L, but not

a) pairs of such blockers (onc at cach end), NOR
b) the blocker B ,.

This gives a contribution of

n-2
(6.10) UQa-U{Q(n-1)+2- ¥, 7,Q(n-1-¢)}.
q=1

Note the upper limit of the sum; hence the exceptional casc in the dcfinition of Y, never
occurs.

Finally, if o is down and both wings are down, this constitutes a blocking sct B, | per
se so no contribution to case I) is made. Now adding (6.4) through (6.10) gives a recursive
expression for Qg (n) which may easily be implemented on a computer.

Such an implementation was done in the 'C’ language, and was run in many cases. Scc
Figure 8 for a comparison of different architectures. The results were compared in several
cascs to answcrs given by an cxhaustive method. [A.L. White & K. Dotson, personal com-
munication]. A ‘‘spanning tree’’ in a graph is a tree whosc nodes are all the nodes of the
graph. If any spanning tree is ‘‘up’’, the graph is connected. All spanning trees were
cnumerated and given as input to a boolean solver, which computed the probability of the
union of the events by exhaustive consideration of possible outcomes.

Results found are given in table 1 (Link Unreliability = 0.7)

Table 1.
System Unreliability

Exhaustive Boolcan Method | Blocking Set Mcthod
Rs 0.743739 0.7437395224
R 0.822945 0.8229446323

There is agreement to within 5x1077 or about 7x1075%.

In the case of the braided six ring, the exhaustive mcthod consumed several hours of
run-time, whereas the current method gave its result without perceptible passage of time.

Solution of a general network reliability problem ought to involve computations which
increase in number exponentially with the number of nodes. For a given topology, it is
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possible to find a closed polynomial solution once and for all; hence it is meaningful to give
the number of operations nceded to find this polynomial, which is of degree 2n for the
braided ring graph.

Thus, suppose that to find O (n-1) takes ¢(n—1) floating point operations (flops). That
is, after ¢(n—1) operations, the value of Q(n—-1) has been found and storcd for later use,
along with that of Q (i), 1 £i < n—1. Then formulas (6.2) and (6.3) give

n-1
d(n)=2+¢(n-1)+2+ Y, Q2i+1)

i=]

= 2-n(n-1)1n-1)+4 + ¢(n-1) roughly. So in the long run, ¢(n) = ¢(n—1) + 2n%. Thus
we may expect

for moderate to large n.

Figure 9 shows how the actual number of flops varies with the size of the braided line.
This was done using a MATLAB implementation. Although *‘start-up costs’’ make this
number larger than suggested by (6.11) for small n, when n becomes larger the actual
growth seems to be greater than O(nz) but less than O (n*). Similar analysis of the ring
computations (6.4) - (6.10) indicate that computational complexity growth (given about n
storage locations) is on the order of n3 or less.

7. APPROXIMATIONS AND GENERALIZATIONS

Asymptotic Analysis

When the link failure probability U is very small, it is possible to get quite accurate
estimates for system reliability by performing only a trivial amount of computation. Consider
the braided n-line L,. Let U be small and 1-U *‘close to’' 1. Consider an event character-
ized by some blocking sets and their complementary intervals. The ‘‘up’’ probability for the
complementary intervals is roughly equal to 1. Several factors of U and (1-U) enter into
the blocking set probability calculation; terms with the fewest factors of U will be dominant.
In fact, the blocking scts By, and B,_,, give rise to failure probabilities = U 2 each. This
gives a first-order approximation

(7.1) A(n-1)=1-2U%
which is indcpendent of n(!) In reality, making n larger will increase the unreliability. This
means that U may no longer be discrepancy is recovered by a sccond-order approximation.

The singlcton blockers B; ;,q, fori =2, -+ - , n-2, contribute about U 3 apiece to unreliabil-
ity. In addition, B4 and B,_,, contribute a like amount lcading to

(7.2) Pp(L,) =2U*+ (n-1)-U>

in our older notation.
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For the ring case, in R, an even 2-blocker B; 4, i=1, -+ , n (mod n) contributes
n-(l—U)U‘. The pair of abutting 1-blockers (Bj iy, Bis1ie2)s i=1, =- -, 1 contributcs
nUS, and adding gives nU®% This expression could also have been arrived at by noting that
four down cdges can isolatc a singlc point in this way only (all edges to a certain node arc
down). The next power which contributes anything is U 6 and therefore we expect
Pp(R,) = nU 4 to be a good approximation for small U.

A different situation ariscs when U is large (1-U is small). Then we have an approxi-
mation

(7.3) 1-Pp(R,) EM-(Q-UY",

for reliability, where M is the number of spanning trecs of R,. Viability of a spanning trcc
is “‘rare’’ on the order of (1-U )"}, but the coincidence of two distinct trees is ‘‘ncgligibly’’
rarer; thereforc we may add the probabilitics of these events as if they were disjoint.

As an “‘application’* of this obscrvation we took n =5, U = .99, computed Pp(R,) by
our algorithm and found rcliability to be 1.2x107¢ and M =119.82. For U =.999,
1-Pp (R,) = 1.245x107'0 and M = 124.47. The correct answer is M = 125 which may be
found by the Binet-Cauchy formula {8], p. 145. For n=11, U=.99, we get M=86043 by our
approximation when the answer should be 87131. Larger values of U do not avail in this
algorithm as ‘‘reliability’* is approaching machine precision. The program could be written
to perform the divisions by (1-U) at suitable junctures, instcad of all at once, to allow
further test of (7.3) should anyone wish to do so.

Other Networks

The solution technique employed in this article can be adapted to more general classes
of networks. Two cases of this are, for the braided n-ring R,, what is the overall reliability
given that a certain link (primary edge or moon) is known to be down or when some particu-
lar link is known to be functioning. Let us apply these ideas to the calculation of the
difference between the reliabilities of the resulting networks when a primary link, or a
“moon’’, respectively, fails. Such knowledge could become a consideration in
reconfiguration strategy. For cxample, the IAPSA architecture [9] embodics fault-tolerant
computers, such as the Advanced Information Processing System Fault-Tolerant Computer
(AIPS-FTP) developed by Charles Stark Draper Laboratories, as nodes and an Input-Output
Mesh network for intemode communication. A reconfiguration strategy for the network in
the face of two link failures might have to decide which of two links (say one a primary link,
one a moon) to repair or replace.

Is the ring network more sensitive to a primary edge failure than to a moon failure?

We indicate the mcthod in case the primary link « = (n,1)” is down. As in scction 6.,
we consider the three types of interval indicated in I), II), III). Case III), which concems the
global blocker, is similar to the analogous case handled in section 6. Case I), where there are
no blocking sets, involves fewer terms, only (6.9) and (6.10), where the primary link o is
down. In case II), the case of one blocker, we have to distinguish whether o is in the block-
ing sct or in the complementary set. The first instance is routine, and in fact reduces to a
line problem. The sccond case involves finding the probability that a braided line
(1, -+ , k] is up, given that (i,i+1)” is down. Using analysis similar to that needed for
(6.3) and (6.7), this is rcadily found.
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In the other case of intcrest, in view of symmetry we may as well take B=(n.2) as
down. Without going into details of the implementation, suffice it to say that this problcm
presents a few peculiaritics which confirm the flexibility of the solution method we employ.
For instance, no global blockers are possible in this case, so casc III) can be ignored. Since
no blocker may extend over B, case II) becomes nearly like finding Q (n-1), and for casc I),
a search is done of formulas (6.6) to (6.10) to sce which of them contribute. (They are 6.6,
6.7, and 6.9.)

We let Pg, Po. Pp denote, respectively, the failure probabilitics of the (ordinary) n-
ring, the n-ring with a primary edge failed, and the n-ring with a moon failed. When
n=5U=29, rcsults werc compared with the brutc-forcc approach. They were
P, = .994780(278). The extra dccimals were provided by our present method. This number
was the computed valuc of Py as well. This is as it should be sincc R is a complete graph
and R — {a) is isomorphic to R — (B}. This holds truc for R as well, but not as obviously.
The first case where P, may not cqual Pg is for n = 7. Results arc shown in Figure 10. It
is somewhat surprising that the failure of a moon degrades the reliability more than the
failure of a primary edge.

We obscrve that Pg — P is greater than Py — Pg by about 0.2% for U = .05, increas-
ing t0 5.5% for U = .95. As U — 0 we expect Pp/P, to approach 1, since both are dom-

: 1-P
inated by terms n-U 4" When U — 1, we expect -(——E)- to go to Mp/M,, where M is the

(1-Py)
number of spanning trees in cach respective graph. Taking U = .99, we get very small relia-
1-P
bilitics, but (1-Pp) = 962737. By the Binct-Cauchy formula, M = 663 and M, = 689;

M

thus ;’—B- = 962264, which is rcasonably close. In gencral R, is a more rcliable network
a

than Rg because it has more spanning trees (see Table 2).

Finally, consider one approach to analyzing a more general type of network. If in the
new network A, the edges are like the primary edges (i,i+1) and include in addition (sccon-
dary) edges of the form (i ,i+3), we might try to define a blocking set as follows. A (block-
ing) interval [i, - - - , j] has all of its primary edges down, all internal secondary edges up,
and all secondary edges that leave the interval, down. This is a reasonable generalization of
our previous construction. But consider Figure 11; both [2, 4] and (3, 5] satisfy this
definition of blocking sct. But their intersection is a non-empty intcrval. Thus proposition 1
docs not hold. It is harder to apply an analogy of theorem 2, and the combinatorial analysis
would scem difficult.
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Table 2.
Number of Spanning Trees

Vertices Trees Moon Down  Primary Down
5 125 75 75
6 384 224 224
7 1183 663 689
8 3528 1932 2037
9 10404 5576 5984

10 30250 15950 17325
11 87131 45301 49751
12 248832 127872 141696
13 705757 359053 400993
14 1989806 1003574 1128361
15 5581500 2793800 3159800
16 15586704 7749924 8810949
17 43356953 21430143 24477219
18 120187008 59090912 67773152
19 332134459 162519651 187095569
20 915304500 | 445948800 515120925
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